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Abstract 

Planarity of some atomic groups is one of the impor- 
tant stereochemical features of a model under 
refinement. A planarity restraint is usually included 
in the functional to be minimized. A new method of 
analytical calculation of the exalet gradient value is 
suggested for the standard function [Schomaker, 
Waser, Marsh & Bergman (1959). Acta Cryst. 12, 
600-604] which controls planarity in the most direct 
way. This approach makes it possible to refine the 
optimum plane orientation at the same time as atomic 
coordinates. 

I. Introduction 

The procedure for atomic model refinement in protein 
crystallography is (or may be reduced to) a minimiz- 
ation of some functional. This functional is usually 
a sum of simple criteria, each of which is responsible 
for a special type of restraint. One of the most impor- 
tant stereochemical restraints imposed on a number 
of atomic groups is a planarity restraint. It usually 
consists of items of the same type, each of which is 
a function of the coordinates of the atoms which 
should lie on the plane. The function value increases 
with planarity distortion. 

Various approaches are known to define such a 
function. In one of them planarity is controlled by 
means of bond lengths, bond angles etc. (Waser, 1963; 
Levitt & Lifson, 1969; Hermans & McQueen, 1974; 
Ten Eyck, Weaver & Matthews, 1976; Chambers & 

Stroud, 1977). Another method is the introduction of 
one (Dodson, Isaacs & Rollett, 1976) or two (French, 
1975; Tomlin, 1987) dummy atoms at a distance from 
the best plane through a group of atoms and changing 
the distances between atoms of the group and the 
dummy atoms. The third approach (used, for 
example, in a program by Hendrickson & Konnert, 
1980) is based on the calculation of a root-mean- 
square deviation of atoms from the best plane 
(Schomaker et al., 1959). This approach seems the 
most suitable of the three, since the two others define 
planarity requirements in a less direct way and are 
not always effective (the latter was demonstrated by 
Haneef, Moss, Stanford & Borkakoti, 1985). But one 
should keep in mind when dealing with the last 
method that it requires the calculation of the best 
plane parameters. Usually, they are determined with 
the iterative procedure of Frazer, Duncan & Collar 
(1938), and the best plane orientation is difficult to 
refine. To avoid the problem of the choice of the best 
plane, Haneef et al. (1985) suggested a new variant 
of this approach that does not need optimal plane 
parameters and makes use of a very simple criterion. 

In spite of the evident advantages, the criterion of 
Haneef et al. (1985) has an important feature: it 
distorts the atomic group, forcing atoms to move 
towards the centre of the group. This effect is 
explained in the present work. Of course, other func- 
tionals, e.g. bond-length restraints, prevents the group 
from collapsing, but we could not then clearly recog- 
nize which functional is responsible for planarity only 
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and which is responsible for another restraint. This 
is therefore not a good method both for compre- 
hension and for some practical studies. So the prob- 
lem was to combine the directness of the standard 
criterion. (Schomaker et aL, 1959) with the possibility 
of the exact calculation of its gradient. 

II. The general method of planarity optimization 

1. The problem of  planarity optimization 

Suppose there are N atoms with coordinates {rj} = 
{x,, yj, z,}, j = 1 , . . . ,  N. The equation of a plane may 
be defined by the unit vector n, [n I = 1, which is per- 
pendicular to the plane, and by a point m belonging 
to the plane. The root-mean-square displacement of 
atoms from the plane is 

( 1 / N  E [ ( r j - m ) r n l  2 , (1) 
j = l  ..... N 

where a r means the transposed column vector a. 
Hence, the function 

F({rj}) = min Y. [ ( r j - m ) r n ] 2  (2) 
m,n, ln l= 1 j = l  ..... N 

may be taken as a planarity restraint, where the 
minimum is considered with respect to all possible 
planes. Then planarity optimization for a group of 
atoms with coordinates {rj} would mean the minimiz- 
ation of the function 

F({r,})-+ min. (3) 
{rA 

2. The best-plane determination 

We denote by m,  and n .  the value of the parameters 
m and n of the best plane for a given set of atoms, 
i.e. ones minimizing the sum in (2) for a given {r,}. 
A well known geometric fact is that 

m ,  = 1 / N  • rj, (4) 
j = l  ..... N 

i.e. m, is the centroid of a system of points with 
coordinates {rj}. Hence, the replacement of variables 

r ~ - ~ q j = r j - 1 / N  Y~ rj (5) 
j = I , . . . ,N  

reduces (2) to a simpler function: 

f ({q,})= min Y~ [qTn] 2 
*.1.1= 1 j= 1 . . . . .  N 

= Y. [qfn,({qj})]  2. (6) 
j = l  ..... N 

To determine the optimal vector n ,  of the normal, 
Schomaker et al. (1959) used a very simple iterative 
procedure of Frazer et al. (1938) which gives a numeric 
answer. This is an effective approach but it leads to 
some problems when f({qj}) is minimized. Gradient 
methods are usually used for atomic model refinement 

and the gradient of the function f should be calcu- 
lated. However, the derivatives of the n,({qj}) are 
difficult to calculate when using an iterative pro- 
cedure, and usually only partial derivatives of the 
function f with respect to qj are calculated. This 
means that vector n,  is a constant when calculating 
the gradient of f({qj}) and the plane orientation is 
not refined during the minimization step. 

3. The approach by Haneef  et al. (1985) 

The sum in (6), the minimum of which is equal to 
zero, may be rewritten as 

Y. [qTn]2 = nrVn, (7) 
j =  I , . . . ,N  

where 

V=  V({qj}) = Y~ [qjqr] .  (8) 
j=l , . . . ,N 

The right-hand side of (7) is equal to zero if and only 
if the determinant of matrix V is also equal to zero: 

y~ [qYn]2 = 0 o d e t  V({qj}) = O. (9) 
j=l , . . . ,N 

Proceeding from this fact, Haneef et al. (1985) sug- 
gested the following form for the minimization prob- 
lem (3): 

fv({qj}) = det V({qj}) ~ min. (10) 
{q j} 

Such a replacement of the function to be minimized 
looks attractive since it makes the determination of 
the best plane unnecessary and greatly simplifies the 
calculation of the new functional and its gradient. 

4. Comparison of  the functionals 

Let h~, A2 and A3 denote the eigenvalues of the 
matrix V defined in (8) and Vl, v2 and v3 denote the 
corresponding normalized eigenvectors (vj = 1 for 
j = 1, 2, 3). The eigenvalues are non-negative, 0_< h~ -< 
A2 -< h3, since the matrix is symmetric and positively 
defined. Because of the orthogonality of eigenvectors, 
any unit vector n may be written as the sum 

n : of i v  I + 092V2"~- ~ 3 V 3  (11) 

with 
2 ,,,+ ~ +  ~--- 1 (12) 

and (6) with (7) taken into account becomes 

f ({q j})=  min [ce2Al({qj}) 
ot l,Ot2,ot 3 

+ ot22h2({qj}) + a~h3({qj})]. (13) 

Here the minimization in (13) with respect to a~, a2, 
c~3 under condition (12) means the search for the best 
plane. This minimum which is h~ can be achieved at 
cz~ = 1, az = O, a3 = O, i.e. when n, the normal vector 
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to the plane, is an eigenvector of  matrix V corre- 
sponding to its smallest  eigenvalue. So the problem 
of opt imizat ion (3) is reduced to the problem of 
minimiza t ion  of the smallest  eigenvalue of matrix V 
(Schomaker  et al., 1959; Urzhumtsev, Lunin & Ver- 
noslova, 1989): 

f({qj}) = h~({qj}) ~ min.  (14) 

Also it follows from (13) that the eigenvalues '~l ,  '~2 
and A3 are characteristics of  the degree of planari ty 
of the atomic group along the eigenvectors of  matrix 
V: A~ corresponds to the 'best '  direction, A 3 to the 
'worst '  direction and A2 to a third direction perpen- 
dicular  to them. 

Since the de terminant  of  the matrix V may be 
calculated as 

det V =  hlh2h3, (15) 

it can be seen that the minimiza t ion  (10) proposed 
by Haneef  et al. (1985) optimizes planari ty along 'all 
directions at a time',  not along the 'best '  direction. 
In other words, the 'volume'  of  the system of points 
is min imized  and points move towards the centre of 
mass. It is easy to see that this is not quite the task 
we have stated above. This also explains why it is not 
necessary now to calculate the best plane. 

III. Analytical calculation of the standard planarity 
criterion 

1. Analytical calculation of  the smallest eigenvalue 

Since it has been proved that problems (3) and (14) 
are the same, the analytical method of h~({qj}) calcu- 
lation could el iminate the principal  shortcoming of 
the criterion (2) in gradient  calculation. 

The set of  eigenvalues of matrix V defined in (8) 
may be determined from the equation 

det [ V - A E ]  =0 ,  (16) 

where E is a unit matrix. If we denote q i =  
{Xj, Yj, Zj}, the eigenvalues are roots of  

A3+aA2+bA + c  =0 ,  (17) 

where 

a .m- - S x x  - S y y  - S z z  

Sxx 
b = det \ Svx 

Sxx 
+ det \ Szx 

Sxx 
c = - det [ Syx 

\ Szx 

Sxv~ + det ( Svv Syz~ 
S v v /  Szv S z z ]  

Sxz~ 

Szz ] 

SX y S x z ~  

S y y  S y z  I 

S~ S~ ] 

(18a) 

(18b) 

(18c) 

and Sxx denotes Y.i=l ..... N XjXj,  Sxv denotes 
Y.j=, ..... N XjYj etc. The use of the new variable 

I x = h + a / 3  

reduces (17) to 

(19) 

where 

IX3 + gix + h = 0 (20) 

g = - a 2 / 3 + b  (21a) 

h = 2 (a /3 )  3 -  ab/3+ c. (21b) 

Since the eigenvalues of the matrix V is real, the roots 
of  (20) may be expressed as (Korn & Korn, 1968) 

Ixo = 2 ( - g / 3 )  ~/2 cos [ a / 3 ]  

Ix+ = 2 ( - g / 3 )  1/2 cos [ (a  + 2rr) /3]  (22) 

IX_ = 2 ( - g / 3 )  ~/2 cos [ (a  - 2rr) /3]  

where 

cos ( a ) =  - ½ h ( - g / 3 )  --3/2 (23) 

Let us choose a value of a in the interval [0, rr] as a 
solution of (23). Then it can be seen from the 
tr igonometric circle (Fig. 1) that in all si tuations root 
Ix+ is not greater than Ix_ and Ixo. Hence, 

a , ( { q j } )  = I x+ ( {q j } )  - a ( { q j } ) / 3  (24) 

and may be calculated analytically by (18)-(24). Thus, 
the full chain  of the criterion calculations is 

{ r j }  (5) (,81, (2,) , {q j} a, b, c , g, h 

(23) (22) (24)) 
) cos ( a )  ) Ix+ x , .  (25) 

2. Gradient calculation 

Gradient  calculat ion for the funct ional  to be 
minimized  is a necessary step of the refinement pro- 
cedures used nowadays.  Since planari ty restraint is a 

(~+2!;)/3 \ [ /  ,~/3 

& 
(,'r-2~)/3 

Fig. 1. A schematic diagram of the roots of  the reduced third- 
degree equation IX3 + gix + h = 0: 

Ixo = 2(-g/3) t/2 cos [a/3]; 

IX+ = 2(-g/3) I/2 cos [(a + 2~r)/3]; 

Ix_ = 2(-g/3) 1/2 cos [(a - 27r)/3]. 

Here 0 < - a(g, h)<- ~r. 
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component of the functional, its gradient should also 
be calculated. 

It follows from the fast differentiation algorithm 
(Kim, Nesterov & Cherkasskiy, 1984; Lunin & 
Urzhumtsev, 1985) that the gradient of an arbitrary 
functional depending on any number o f  variables may 
be calculated using practically the same time as is 
needed to compute the function itself. Besides, no 
difference approaches are needed in this case and the 
calculated gradient value is exact, not approximate. 
This is performed by 'reversing' the chain of the 
functional calculations, i.e. by calculating at each step 
the gradient with respect to the variables in the pre- 
ceding step of the functional calculation. 

Following this algorithm the gradient of A({rj}) 
should be calculated with the 'reversed' chain (25): 

I7.+A, ~ Vcosl,.)A~ ~ ~TghA~ lT,,bcA~ 

-~ VqA 1 --~ I7rA , . (26) 

Here V,,f  means the gradient of the function f calcu- 
lated with respect to the variables x. Note that to 
calculate 

OA,/Ocos(ot)=[OA,/Olx+J[op,+/Ocos(ot)] (27) 

in the first step of (26) one may use the transformation 

d cos [ (a  + 2 z r ) / 3 ] / d  cos (a )  

={d  c o s ( a ) / d  cos [ (a  +27r)/3]} -l 

=~{4 cos 2 [ (a  + 2 r r ) / 3 ] -  1}-'. (28) 

3. Singular situations 

Roots of equation (20) are real if (Korn & Korn, 
1968) 

g~ = (g/3)  3 + (h /2 )  2 <-0 (29) 

R2 = g <- O. (30) 

When R~ is small (R~ ~ -0 ) ,  it is difficult to compute 
(28) because R~=0  yields a = 0  and c o s [ ( a +  
2"rr)/3] = ½. Besides, if g - ~ - 0  [it follows from (29) 
that h -~ 0 and R~ ~ - 0], then problems arise with the 
calculation of cos (a )  or VghA~. So, in practical calcu- 
lations for R~ > - e  (e is some small positive value) 
we set 

g = - 3 [ e +  h2/4] ~/3 (31) 

which gives R i - - - e < 0 a n d  R 2 = g < O .  

4. Remark. A linearity criterion o f  an atomic group 

Following Schomaker et al. (1959), we can propose 
a similar criterion to 'linearize' an atomic group. In 
terms of the eigenvalues, it states the minimality of 
the two smallest eigenvalues, A~ and /Ik2, e.g. 

f~({qj}) = Al({qj}) + A2({qj))-~ min. (32) 
{q j} 

It is clear from Fig. 1 that A~ and A2 correspond to 
/.t+ and/z_.  This shows the possibility of an analytical 
expression for such a criterion and its gradient. 

IV. Model calculations 

To test our approach we used a ' tyrosine-type'  model 
structure consisting of eight 'atoms'. The atoms were 
initially placed in the plane z - 0  at a distance of 
1.5 A to form a six-membered ring with an extra 
couple of atoms connected to two opposite ring atoms 
(Fig. 2). Then the end atoms, A and H, were shifted 
by Ar along the z axis and the ring atoms B and G 
were connected to them by a movement of the same 
amount in the opposite direction. For such a system 
of points we calculated the gradient of functional f v  
proposed by Haneef et al. [see (10)] and the gradient 
of the functional f defined in (14). It may be seen 
from Table 1 that the stronger the distortion of the 
plane, the more the criterion f v  forces atoms to move 
toward the centre (the gradient is opposite to the 
direction of minimization). In contrast, the gradient 
of the criterion f calculated with (26) has no noise 
components until Ar reaches a value of 1.50 A, after 
which the atoms begin to pack in a new plane, y - -0 .  

We discuss here only gradient calculation but no 
test refinement because the latter is connected with 
a different question of the choice of methods and 
strategy of minimization. This example has shown 
that our approach allows one to restrain only what 
is wanted to be restrained and from this point of view 
the approach seems preferable to others used 
nowadays. 

V. Concluding remarks 

Different criteria may be used to restrain the planarity 
of atomic groups. The very convenient criterion by 
Haneef et al. (1985) has a principal shortcoming. In 
the present paper we have shown that the well known 
standard criterion (Schomaker et al., 1959) may be 
rewritten in an analytically tractable form. Although 
slightly more time consuming than the method of 
Haneef  et al. (1985), the present method is free from 
the defects of the latter while preserving its most 

C -  - E  

Fig. 2. The model structure used in the test calculations. Inter- 
atomic distances are 1.5 ,~. The z coordinates are set: for 'atoms' 
A and H to +Ar, for 'atoms' B and G to -Ar, and for 'atoms' 
C, D, E and F to zero. 
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Ar 

0.10 
0.25 
0.50 
0.75 
1.00 
i -25 
1-50 

0.10-1.25 
1.50 

Table 1. Gradients of planarity criteria calculated for the model structure 

Gradients  are normal ized  under lVFA.zl = 10 000. Here A, B, C are different a tomic  types (Fig. 2). 

A B C 

Criterion V~ Vy V z V~ Vy V: V x 

fv* -484 0 10 000 -242 0 -10 000 -121 
fv -1210 0 10 000 -605 0 -10000 -303 
fv -2424 0 10000 -1212 0 -10 000 -606 
fv -3630 0 10 000 -1815 0 -10 000 -909 
fv -4848 0 10 000 -2424 0 -10 000 -1212 
fv -6060 0 10 000 -3030 0 -10 000 -1515 
fv -7260 0 10 000 -3630 0 -10 000 -1815 

f t  0 0 10 000 0 0 -10 000 0 
f~ 0 0 0 0 0 0 0 

*fv = ;qX2,~3 [see (10), (15)]. 
t f = A  l [see (14)] 

Here normalization is under the condition IV ft. , ] = 10 000. 

~Ty ~7 z 

775 0 
1 938 0 
3 876 0 
5813 0 
7 752 0 
9 690 0 

11 625 0 

0 0 
i 0 000 0 

important property of an analytical expression in 
terms of atomic parameters. The exact gradient can 
also be easily calculated, which makes it possible to 
refine optimal plane parameters. This method of 
calculation of this criterion and its gradient may be 
included in any refinement program. 

The author thanks O. M. Liguinchenko for help 
with the English and the referees for essential 
improvements in the text. 
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Abstract 

A crystal of (Srl.sCal.5)Cus+~Oy has been studied by 
means of electron diffraction analysis and high-resol- 
ution transmission electron microscopy. A chimney 
ladder structure has been identified in the crystal, 
which is composed of two sets of incommensurate 
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orthorhombic sublattices L I and L 2 with a = al = a2 = 
1-28, b =  bl = b2 = 1.13, c1=0.390 and c2=0.275 nm. 
Diffraction streaks have been observed in electron 
diffraction patterns, i.e. there is a set of reflection 
planes parallel to a'b* related to L2. A structure 
model with initial phase disorder has been proposed 
to explain such diffraction streaks. A mathematical 
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